Proof Notebook Problem 5

The Problems:

- 1. Let *R* be a relation on some set *S*. Show that *R* is symmetric if and only if R^c is symmetric.
- 2. Let *P* be a partition on a set *S*. Explain how to construct an equivalence relation *R* from *P* and then prove that *R* is an equivalence relation.
- 3. Let S be the set of monomials in the variables x and y. Construct a total ordering of S such that every subset $A \subseteq S$ has a smallest element. Prove that S is totally ordered and provide an informal explanation for why every subset has a smallest element.
- 4. Let *R* be a symmetric and reflexive relation on some set *S*. Show that the transitive closure of *R* is an equivalence relation.

Please do not do multiple problems: you should have a clear mind for the peer review and proof workshop. Only use the forth problem if you're in a group of four.

Item	Due Date	Method
Draft 1	Friday, October 31 (10pm)	Blackboard
Peer Review 1	Before 2 nd draft	On your own – nothing to turn in
Draft 2	Tuesday, November 4	In class
Draft 3	Friday, November 7 (10pm)	Blackboard
Second Proof Workshop	Before final version	Schedule a time to meet with me.
Final Version	Tuesday, November 13	In class

Due Dates:

The peer review process:

- 1. Schedule a time to meet in pairs or groups of 3. Come to the meeting with draft 1 completed.
- 2. Person 1 presents their proof on the board; Person 2 analyzes each step:
 - 1. Is this step intelligible or nonsense?
 - 2. Does this step say what the Person 1 thinks it says?
 - 3. Does this step follow from the previous steps?
 - 4. Is it clear why this step follows?
- 3. Switch roles and repeat (2).